Méthanisation: Energie, GES, accidents ...

2022-01-18, Corcoué-sur-Logne

Daniel Chateigner

Professeur des Universités *Université de Caen – Normandie Université*Coordonnateur du CSNM

CSNM

Création: Octobre 2018

28 scientifiques

Indépendants

- Deutsche Akademie der Naturforscher Leopoldina (2012):
- « Germany should not focus on bioenergy to reduce the consumption of fossil fules and GHG emissions »
- Techniques de l'Ingénieur (2012): La biomasse pourrait menacer les objectifs de réduction de CO2 de l'UE. 17 avril.
- GREFFE: GRoupe scientifiquE de réFlexion et d'inFormation pour un développement durablE: 30 scientifiques

Agronomie

Biochimie, Biologie, Biologie cellulaire

Chimie

Déchets

Ecologie des sols

Electronique

Environnement

Géochimie des eaux et des sols

Géographie physique

Géologie

Hydrogéologie

Médecine générale, Médecine de santé publique

Microbiologie

Physique

Patrimoine naturel historique, Préhistoire

Radiologie

Réseaux informatiques

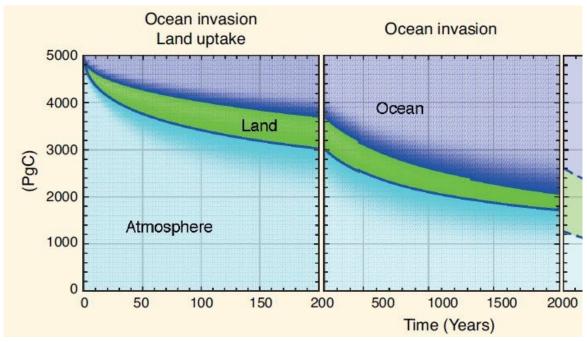
Sols karstiques, Systèmes rayonnants

Toxicologie animale et environnementale

Vers de Terre

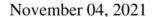
Pourquoi le CSNM ? Des conséquences occultées

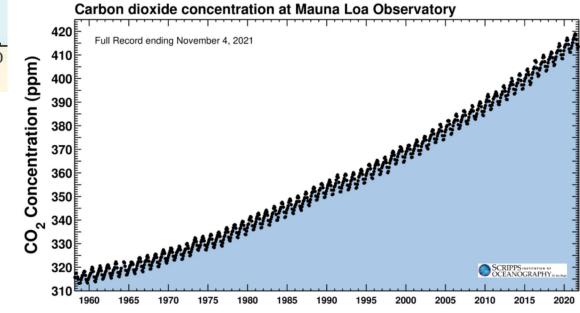
Conséquences (externalités ?) variées et négatives: www.cnvmch.fr


- nuisances (odeurs, sanitaires, transports, bruit)
- impacts sur et hors-sols et la biodiversité,
- impacts sur les nappes et les airs
- immobilier

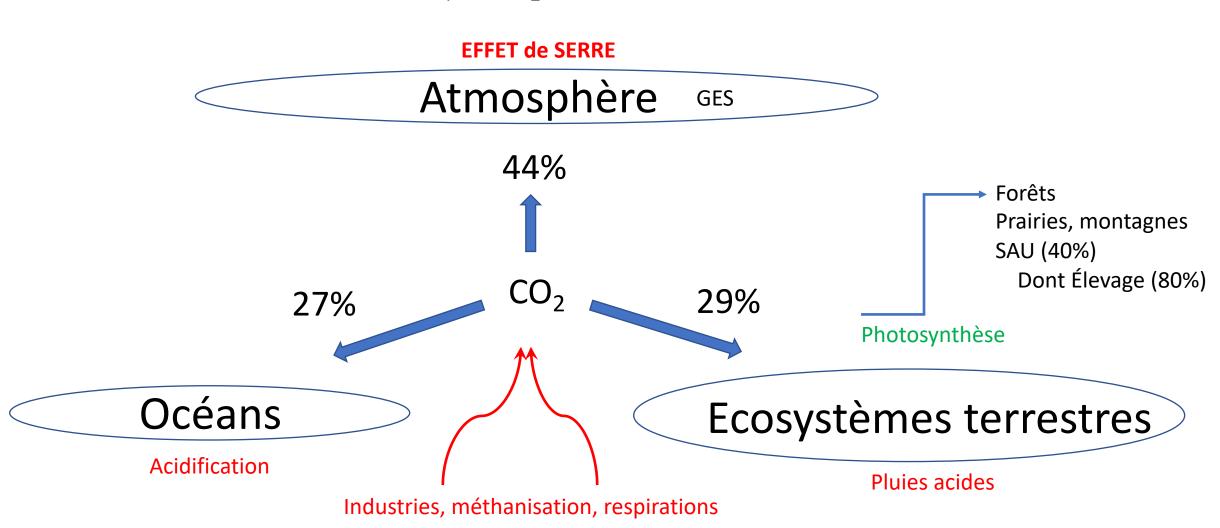
Riverains alertés tard, mécontents en résistance avertie (NIMBY)

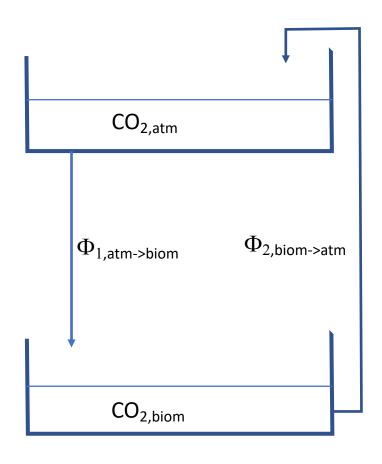
- → > 330 000 signatures de pétitions
- → Fiches pédagogiques du CSNM pour saisir les conséquences des feuilles de route ADEME et autres annonces




CO₂: GES

Rapports annuels du GIEC


Mesures de Keeling



Neutralité carbone ?

Biomasse -> CH₄ -> CO₂ -> plantes -> biomasse ...

Si à chaque instant il pousse autant d'eqCO2 biomasse que ce que l'on utilise d'énergie:

$$\Phi_1 = \Phi_2$$

Hiver: rien ne pousse sous nos latitudes: $\Phi_1 = 0$; Φ_2 élevé Printemps: Φ_1 croissant; Φ_2 décroissant plus légèrement Eté: Φ_1 légèrement croissant ou nul; Φ_2 au plus faible mais pas nul Automne: Φ_1 décroissant vers zéro; Φ_2 de plus en plus fort

Bilan: la différence entre ces deux flux sur une année:

$$\Phi_1 - \Phi_2 < 0$$

on accumule dans l'atmosphère

$$dm_1/dt < dm_2/dt$$

Equation d'un système non conservateur

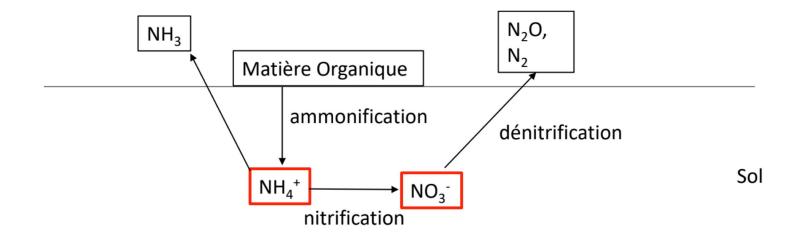
Combien évite-t-on de CO₂ ?

Bilan net mondial émissions : autour de 20 Gt eq $CO_{2,atm}$ par an. Chaque année, l'atmosphère retient 20 Gt de plus de $CO_{2,atm}$. Soit 20 000 000 000 de tonnes

6354 t eqCO2/an/méthaniseur: 3-4 millions de méthaniseurs au monde pour éviter ces émissions.

148 million de km² de terres émergées: 47 km², ou un méthaniseur tous les 7 km

En prenant l'inverse de ce chiffre, 6354 / 20 000 000 000, chaque méthaniseur contribue pour 0,000 032 % à la réduction de CO_{2,atm}. Evidemment s'il fonctionne sans problème.


Et comme pour augmenter la température moyenne du globe de 0,63°C il faut 1000 Gt de CO2 supplémentaire dans l'atmosphère en moyenne (GIEC), on voit que chaque méthaniseur permet d'induire une décroissance de température de :

 $0.63 \times 6354 / 1000.10^9 = 0.000 000 000 4 ^{\circ}$ C

Même le méthaniseur le plus gros en projet en France, celui de Corcoué-sur-Logne prévu pour 680 000 t/an d'intrants (qui affiche une réduction de 59 000 t/an de CO_{2,atm}) n'aurait qu'un impact de 0,000 000 04 °C sur la température moyenne, si la neutralité carbone est assumée ...

Assimilation de l'azote: nitrates ou ammonium?

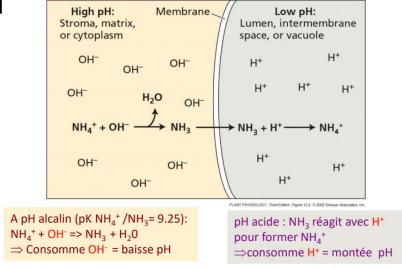
(hors fixation symbiotique de N₂)

- Dans les sols tempérés plus de NO₃ que de NH₄
- Accumulation d'ammonium dans les sols où la nitrification est inhibée (sols acides, hypoxiques) ou par excès d'engrais
- Plantes cultivées tolèrent généralement moins bien l'ammonium que les plantes sauvages

Juliette Leymarie; IEES Paris

Absorption de l'ammonium

Ammonium source d'azote mais toxique à de fortes concentrations : Syndrome ammoniacal


Croissance et rendements diminués, perturbations ioniques et du gradient de

pH, chloroses, stress oxydatif

Augmente la photorespiration et la respiration Perturbations hormonales, modifications de l'architecture racinaire

Toxicité de l'ammonium

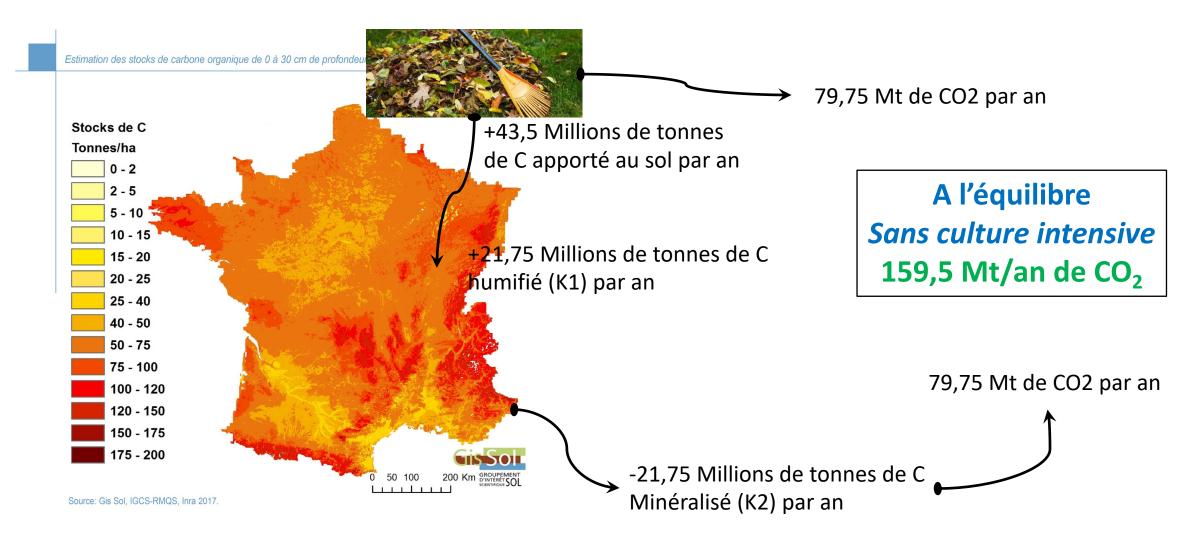
Suppression du gradient de pH

6.0

 $N = NH_A^+$

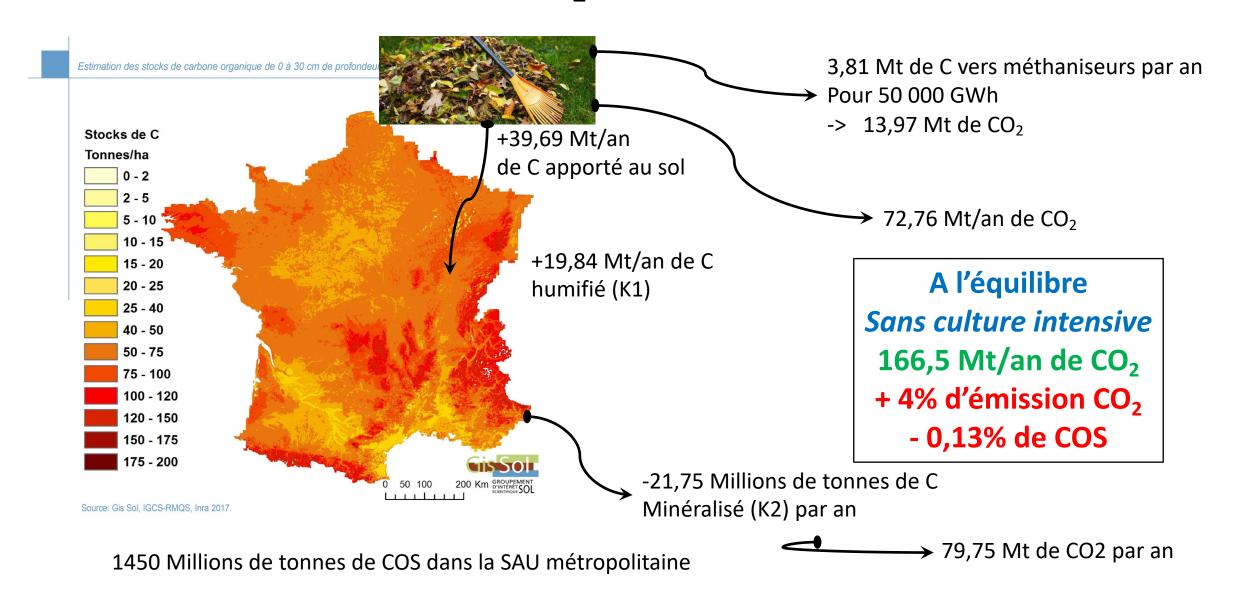
 $N = NO^3$

Hessini et al. (2019), Plant physiol. Biochem.; Krapp (2015) Curr. Opin. Plant Biol.; Li et al. (2017) J. Exp Bot Liu & von Wiren (2017) J. Exp Bot; Noguero & Lacombe (2016) Frontiers Plant Sci.; Sarasketa et al. (2014) J. Exp Bot; Xuan et al. (2017) Curr. Opin. Plant Biol.; Zhang et al. (2018) Eur. J. soil. Science; Zhao & Shen (2018) Frontiers Plant Sci.; Esteban et al (2016) Plant Science


La SAU Française sans méthanisation

MO: résidus organiques amendements organiques 1-K1: coefficient de Rejet de CO₂ minéralisation primaire K1: coefficient Gain en COS d'humification CO₂ Perte de COS K2: coefficient de minéralisation MO stable: humus Rejet de CO₂ secondaire, Processus lent

Le modèle Hénin-Dupuis


Un sol naturel gagne en humus: il séquestre CO₂

Bilan COS-CO₂ sans méthanisation

1450 Millions de tonnes de COS dans la SAU métropolitaine

Bilan COS-CO₂ avec méthanisation

Quelques Grandeurs énergétiques

1 TWh = 1 000 GWh = 1 000 000 MWh = 1 000 000 000 kWh Nous consommons en France plus de 2500 TWh chaque année!

PPE: 7% du Gaz Naturel sous forme de Biogaz en 2028: 31,5 TWh annuels

Méthaniseur moyen: **10,4** GWh annuels

Nombre de méthaniseurs: 31 500 GWh / 10 GWh ~ 3150 méthaniseurs!

Pour: 25000 t x 3150 > 78 Millions de tonnes d'intrants!

Quelques chiffres méthanisation

Méthaniseur moyen 23000 t/an d'intrants de méthanisation (en fonctionnement)

0,010 TWh nominal

25000 x 1388 = 32 Mt d'intrants

2460 ha d'épandages

Energie $1388 \times 0.010 = 13.9 \text{ TWh nominal}$

13,9/2500 = 0,56 % nominal de Eprim (1388 méthaniseurs)

Réduction des déchets 90% des « déchets » restent à épandre : 3,5 Mha d'épandages (11% SAU)

28,8 Mt → 5,6 départements

7-8 TWh efficaces (0,6% du GN)

Cultures dédiées CIVE > 635 000 t > 2 700 000 t

maïs > 125 000 t > 246 000 t

Transition énergétique 900 MW x 8760 h = 7,9 TWh

7,9 / 0,010 = 790 méthaniseurs/réacteur nucléaire

Un rendement énergétique extrêmement faible

A la surface terrestre 1 kW/m² (Eclairement énergétique)

Ou encore: 10000 kW/ha = 10 MW/ha,

soit $10 \times 8760 \text{ h} = 87600 \text{ MWh/ha}$ annuels = **87,6 GWh/ha** reçus annuellement

Que font les végétaux avec ça: ils poussent!

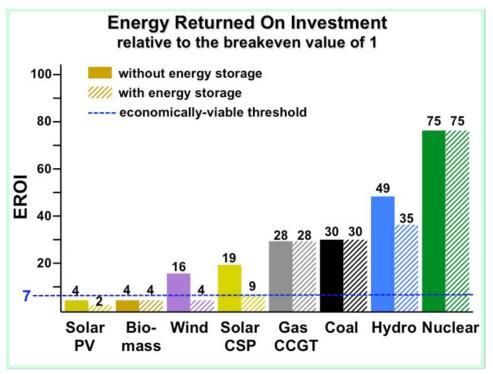
combien puis-je retirer d'énergie en méthanisant? Disons avec 40 t/ha de MO

database CSNM: sur les injecteurs uniquement (les plus efficaces ?):

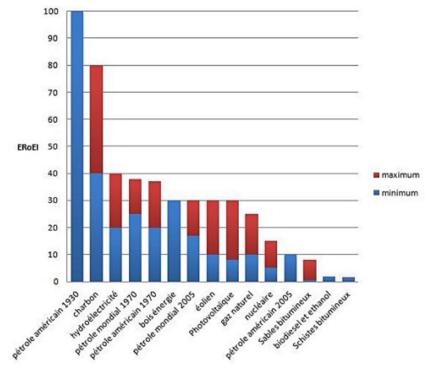
27000 t/an d'intrants → 19 GWh annuelle (nominale). Disons 20.

Il faut donc 27000/40 = 675 ha de cultures pour avoir 20 GWh chaque année, soit 20/675 = 0,03 GWh/ha

Au final, le rendement énergétique de méthanisation REM = 0,03/87,6 = 0,0003 = 0,03 %


Même les panneaux photovoltaïques font 500 à 1000 fois mieux ...

Taux de Retour Energétique TRE (EROEI)


Energie libérée (utile)

TRE = _____

Energie consommée pour cette libération

Weißbach et al., Energy, 2013, 52:210-221.

Objectif Sciences International

GES de la méthanisation

• Gaz Naturel (base carbone ADEME): 227 kg CO₂eq/MWh PCI

Jean-Pierre Jouany

Directeur de Recherches honoraire

INRA

Membre du GREFFE

• Biométhane

Combustion

 $60\% \text{ CH}_4 + 40\% \text{ CO}_2 = 327 \text{ kg CO}_2 \text{eq/MWh PCI}$

Construction-installation du site, Cultures, Chauffage, agitation, capteurs, Gestion auto, Purification, Pertes (fuites) de CH₄, Collecte + épandage des digestats, cultures dédiées

2-3 fois + importantes que les émissions de GES dues au GN ?!

Quel PRG pour CH_4 ? À 100 ans ? À 20 ans ? DIGES 2 ? Quel N_2O émis ?

Jackson et al, *Environmental Research Letters* 2020; Meyer-Aurich, *Renewable Energy* 2012 https://www.isere.gouv.fr/content/download/37658/271663/file/4%20-%20Etude-dangers_SLE_v2_29012018.pdf

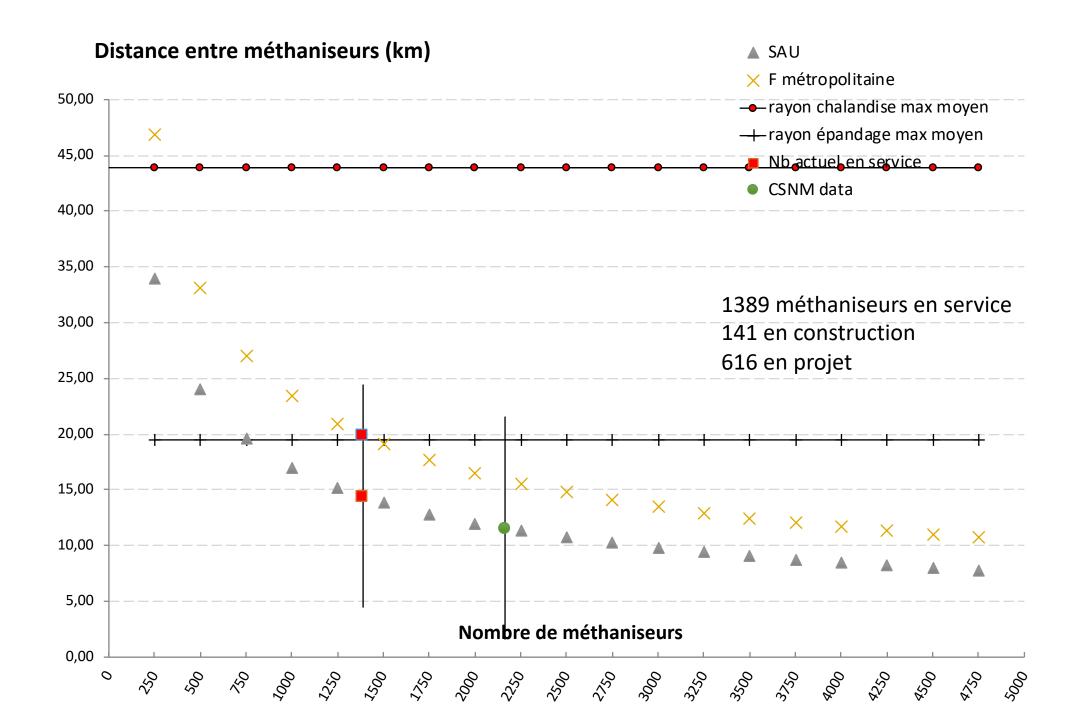
Une concurrence déjà présente

2022-01-04: Ouest-France: Pourquoi la filière équine peine à trouver de la paille

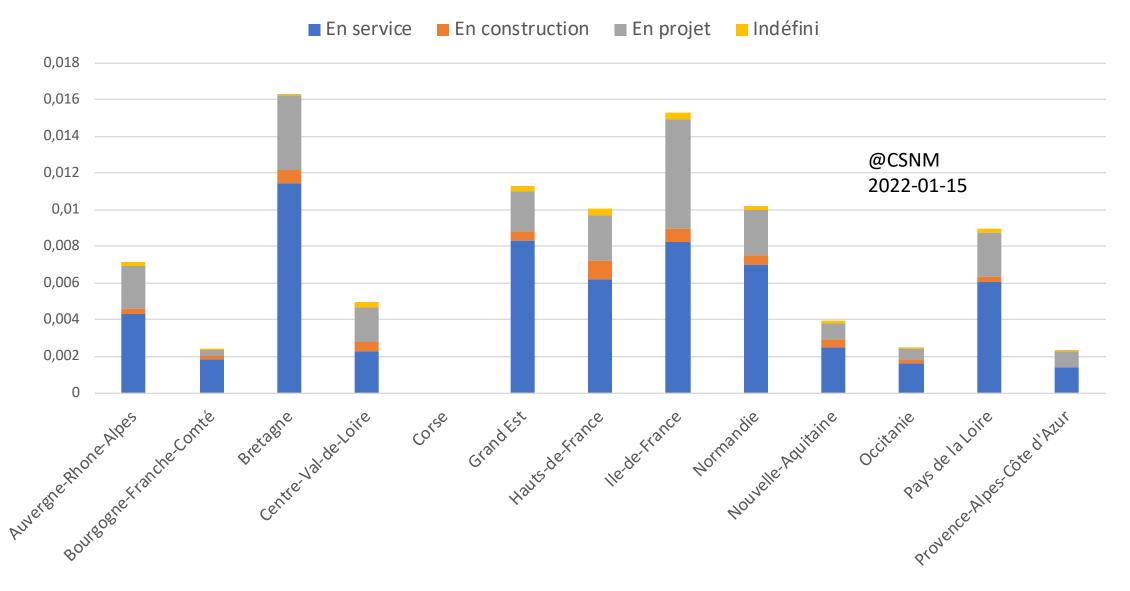
2021-05-05 *Ouest-France*: Méthanisation: Craintes des jeunes agriculteurs, hausse des prix du fourrage

2021-04-05 Réussir: J'ai arrêté les CIVE d'été épuisantes pour les sols (GAEC Chiron)

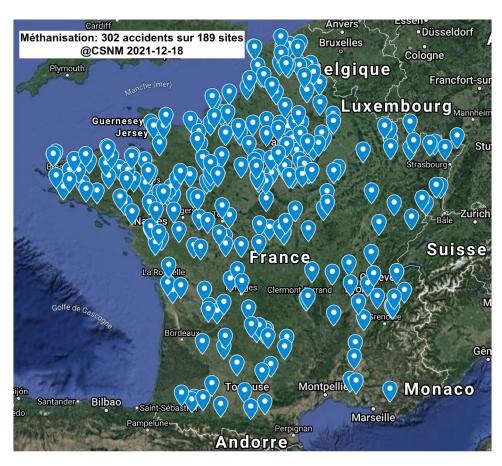
2021-03-10 *La Dépêche-Le Petit Meunier*: Produits cellulosiques _ Concurrence entre nutrition animale et méthanisation concernant les écarts de triage des céréales

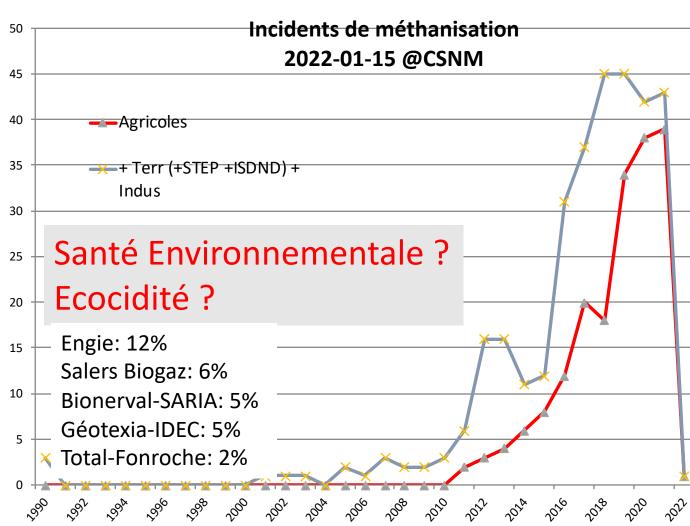

2020-11-14 Grands Troupeaux: Le biogaz contre les éleveurs. « Trop de fourrages finissent dans les méthaniseurs »

2020-09-29 Le Parisien: Méthanisation dans l'Oise : «Ça fleurit dans tous les sens, on a du mal à voir la cohérence »

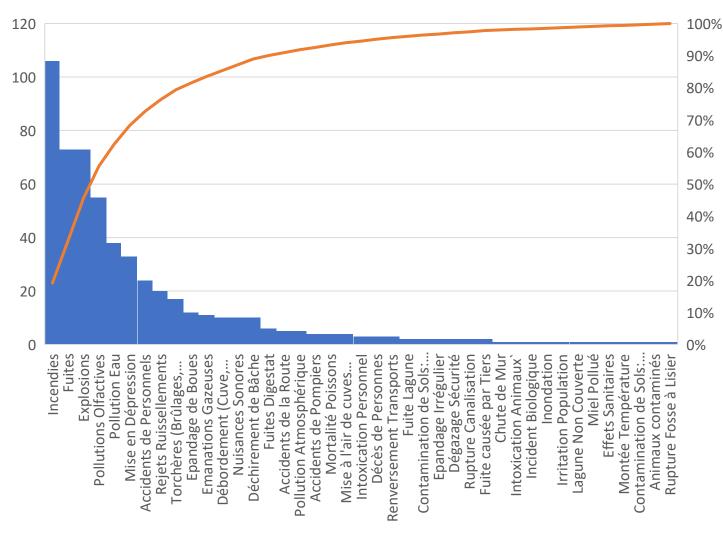

2020-09-29 *L'Est Eclair Libération-Champagne* : Les éleveurs de moutons s'inquiètent de la concurrence des méthaniseurs dans l'Aube

2020-07-16 France 3: En Deux-Sèvres, la pénurie de paille devient récurrente

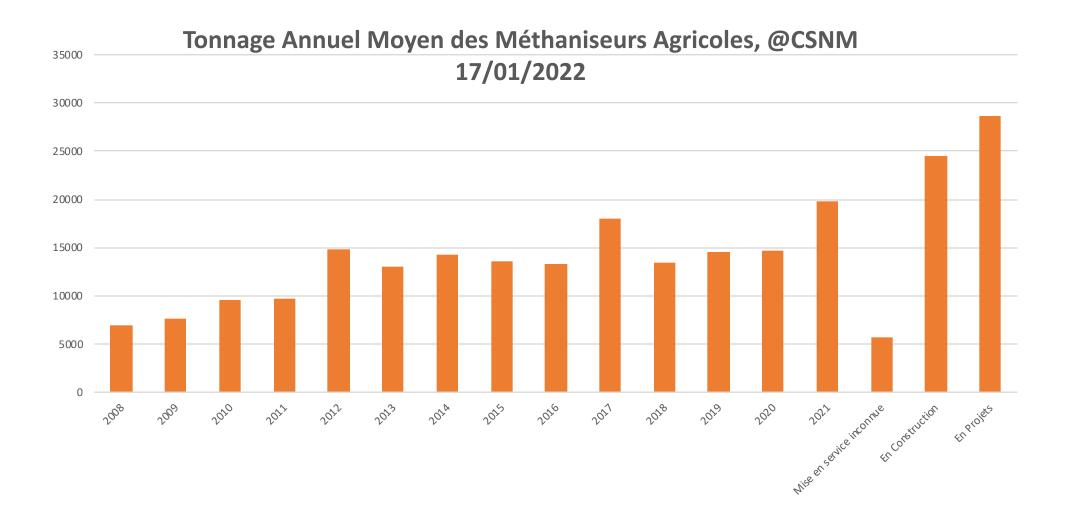

2019-06-14 *La Voix du Nord*: Arrageois-Ternois – la méthanisation agricole, une énergie agricole en plein essort. Les méthaniseurs à la frontière viennent chercher leurs « déchets » en France

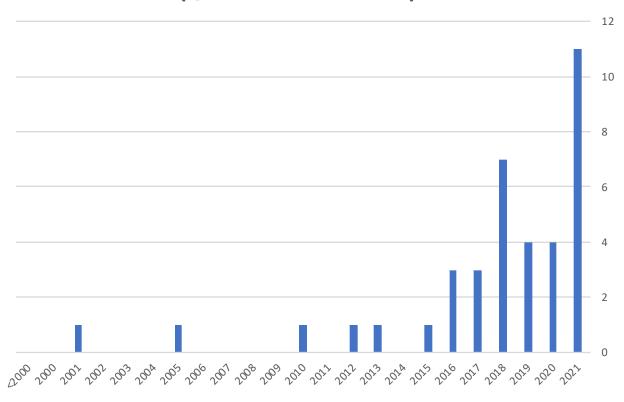

Nb de Méthaniseurs / km2 de SAU

Accidentologie - historique

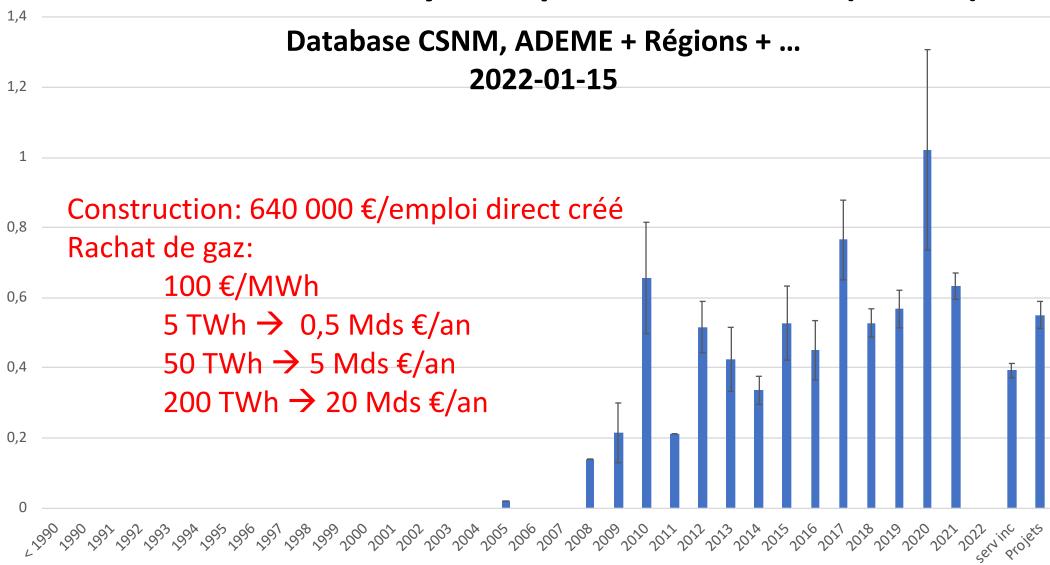


Jusqu'en 2013: 0,01 incident/méthaniseur/an Depuis 2015: 0,04 incidents/méthaniseur/an


Distribution par Types d'Accidents @CSNM


Pays-de-la-Loire Nb Accidents CSNM 18/01/2022 Nb Méthaniseurs en Fonctionnement Nb Accidents CSNM 18/01/2022 Nb Méthaniseurs en Fonctionnement Nb Accidents CSNM 18/01/2022 Nb Méthaniseurs en Fonctionnement 25 20 25 20 44 49 53 72 85

Une industrialisation manifeste


Des cours d'eau et l'eau potable menacés

Méthanisation et Pollutions des Eaux en France (@CSNM 2022-01-15)

Plougar (2021-12), Combrand (2021-12), Rarécourt et Froidos (2021-11), Lusigny-sur-Barse (2021-11), Rougeux (2021-08), Loscouet-sur-Meu (2021-06), Tence (2021-04), La Mesnière (2021-03), Aire-sur-l'Adour (2021-03), Volckerinkove (2021-02), Andelnans, Vihiers, Méry-sur-Seine, Dampierre, Châteaulin, Sainte-Eulalie ...

Subvention moyenne par méthaniseur (en M€)

Impacts pour les agriculteurs avant tout!

Grouiez Pascal (2021). Une analyse de filière des dynamiques de revenus de la méthanisation agricole. *Notes et Etudes Socio Economiques* **49**, 41-61

Mbareche, Veillette, Dubuis, Bakhiyi, Marchand, Zayed, Lavoie, Bilodeau, Duchaine (2018). Fungal bioaerosols in biomethanization facilities. *Journal of the Air & Waste Management Association* **68** 1198

Stolecka, Rusin (2021). Potential hazards posed by biogas plants. *Renewable and Sustainable Energy Reviews* **135** 110225

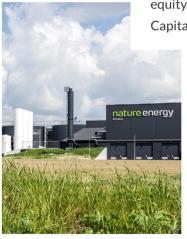
PIONEER Well Energy – 2018

NGF Nature Energy – 2017

In November 2017, Pioneer signed an agreement to acquire via privatisation the largest producer of biogas in Denmark, Nature Energy, which produces green gas that is injected directly to the European grid from farm and food waste. The company has 10 large scale operational plants (including the world's largest wastederived biomethane plant, Korskro) and is expanding 4 and building 3 new plants. The company currently produces c. 100 million m3 of green gas per annum and expects to double this once all expansions and new plants are operational.

Nature Energy is the European leader in the emerging green gas to grid sector, and sits at the intersection of green energy production, the circular economy in waste management, and sustainable farming. Green gas injected into the

Investor consortium acquires Denmark's largest biogas producer



Bioenergy International A Markets & Finance (March 16, 2018)

Denmark's largest producer of biogas, Nature Energy A/S has been acquired by an investor consortium comprised of European private equity energy investment specialists Pioneer Point Partners, global investment firm Davidson Kempner Capital Management (DKCM), and Denmark's third largest pension fund Sampension.

Nature Energy A/S, the largest producer of biogas in Denmark, and the leading producer of green gas to grid in Europe from farm and food waste, was acquired March 14 by a consortium comprised of European private equity energy investment specialists Pioneer Point Partners, global investment firm Davidson Kempner Capital Management and a leading Danish pension fund Sampension.

Méthanisation oui! Mais:

- Pour déchets-vrais uniquement
- Energie utilisée en Circuits courts et autoconsommation
- Intrants et extrants appropriés
- Avec contrôles réels, bien échantillonnés
- Substitution à une énergie plus carbonée
- Utilisation-conditionnement des extrants selon nature et conditions pédologiques
- Subordination des subventions au gain environnemental
- Ne pas comparer aux mauvaises pratiques!

Merci de votre attention!

Les Fiches Pédagogiques du CSNM: https://www.cnvmch.fr

https://twitter.com/CSNM9

www.linkedin.com/groups/8732104/

https://www.facebook.com/groups/445158802683181/

forum-cnvmch-csnm@googlegroups.com

Ventilation Pays-de-la-Loire

Pays de la Loire	en service	133	3			construction	7	7			projets	52	2			Indéte	rminés	
	Agri	Terr	STEP	ISDND	Indus	Agri	Terr	STEP	ISDND	Indus	Agri	Terr	STEP	ISDND	Indus		Somme départeme	ent
44-Loire-Atlantiqu	e 1	5 () 2	2 () 2	2	3 (o 0	C) 0	9	() :	1 () () 1	. 33	
4	9 2	3 2	2 3	3 2	2 5	5	1 (0 0	C	0	14	. 1	L :	1 () 1	1 1	. 54	
5	3 1	6 () 2	2 2	2 (2 (0 0	C	0	10	() (0 () () 1	. 33	
72-Sarthe	2	0 :	1 1	1 () 3	3	1 (0 0	C	0	10	() (0 () 1	. 2	39	
8	5 3	0 2	2 () 1	1 1	l (0 (0 0	C	0	4	() (0 () () 1	. 39	
Tota	al 10	4 !	5 8	3 5	5 13	1	7 (0 0	C	0	47	1	1 :	2 () 2	2 6	198	

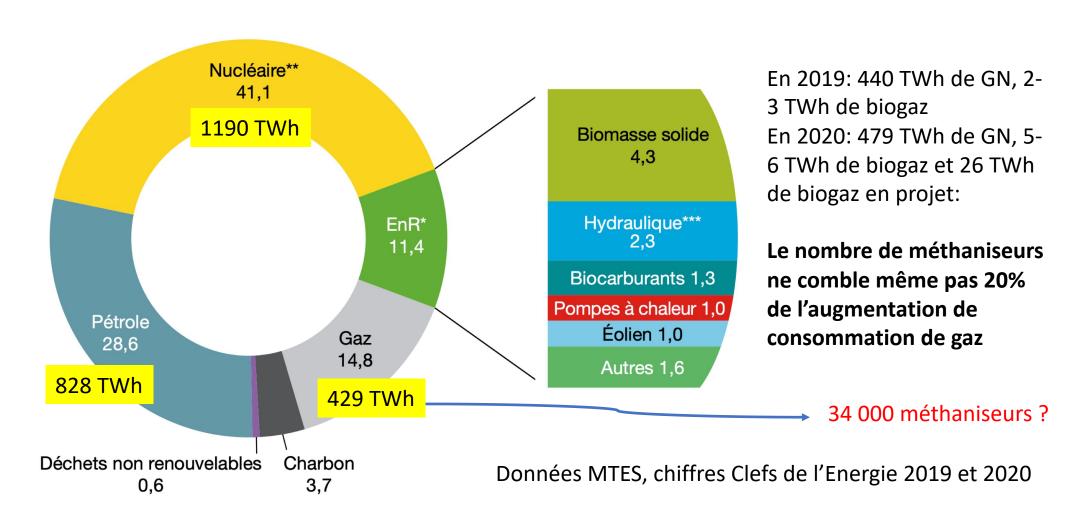
> 50 M€ de subventions à la construction; Un méthaniseur tous les 12 km à terme

Méthanisation en ultra bref!

Deutsche Akademie der Naturforscher Leopoldina (2012):

Germany should not focus on Bioenergy to reduce the consumption of fossil fuels and GHG emissions. This is the conclusion by the authors of this report after balancing all the arguments for and against the use of biomass as an energy source. Particularly, it should insist that the EU 2020 target of 10 per cent renewable content in road fuel energy is revisited. Rather, Germany should concentrate on other renewable energy sources such as solar heat, photovoltaics, and wind energy, whose area demand, GHG emissions, or other environmental impacts are lower than those of bioenergy. Energy conservation and energy efficiency improvements should have priority.

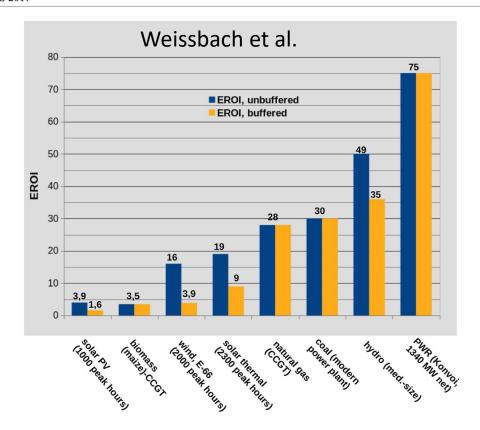
Promotion of bioenergy should be limited to those forms of bioenergy that: (a) do not reduce food availability or spur food-price increases due to competition for limited resources such as land or water; (b) do not have large adverse impacts on ecosystems and biodiversity; and (c) have a substantially (>60-70 per cent) better GHG balance than the energy carriers they replace. The valuable range of services that ecosystems provide to the public also needs to be respected. All these items have to be considered when biomass or biomass products are imported for bioenergy purposes.


Almagro Sébastien	Maître de Conférences	Université de Reims		
Astruc Jean-Guy	Docteur-Ingénieur retraité	BRGM		
Aurousseau Pierre	Professeur des Universités	INRA Rennes, Agrocampus Ouest		
Bakalowicz Michel	Directeur de Recherches	CNRS, retraité		
Bourguignon Claude	Ingénieur Agronome	LAMS		
Bourguignon Emmanuel	Ingénieur Agronome	LAMS		
Bourguignon Lydia	Ingénieure Agronome	LAMS		
Brenot Jean-Claude	Maître de Conférences, HDR	Université Paris-Sud, retraité		
Chateigner Daniel	Professeur des Universités	Université de Caen Normandie		
Chorlay Eric	Docteur en Médecine	Faculté de Lille		
Courtois Pierre	Ingénieur-Physicien	Institut Laue-Langevin		
Demars Pierre-Yves	Chargé de Recherches	CNRS, retraité		
Fruchart Daniel	Directeur de Recherches Emérite	CNRS		
Hamet Jean-François	Professeur des Universités	Ecole Nationale Supérieure d'Ingénieurs		
		de Caen		
Kammerer Martine	Professeur des Universités	Ecole Vétérinaire de Nantes		
Langlais Mathieu	Chargé de Recherches	CNRS, Laboratoire PACEA, Université de		
		Bordeaux		
Lasserre Jean-Louis	Ingénieur Chercheur	CEA, retraité		
Lavelle Patrick	Académicien des Sciences, Professeur	Université Pierre et Marie Curie, Sorbonne		
	Emérite des Universités	Université, Paris		
Le Lan Jean-Pierre	Professeur des Universités	Ecole Nationale Supérieure des Arts et		
		Métiers, Angers, retraité		
Lorblanchet Michel	Directeur de Recherches	CNRS, retraité		
Morales Magali	Maître de Conférences, HDR	Université de Caen Normandie		
Murray Hugues	Professeur émérite des Universités	Ecole Nationale Supérieure d'Ingénieurs de Caen		
Raveau Bernard	Académicien des Sciences, Professeur des	Université de Caen Normandie		
	Universités			
Réveillac Liliane	Médecin Hospitalier	Hôpital de Cahors		
Salomon Jean-Noël	Professeur des Université	Université de Bordeaux, retraité		
Serreau Raphaël	Directeur de Recherches	Laboratoire PsycoMADD, AP-HP Université Paris Saclay		
Tarrisse André	Docteur Ingénieur	DDAF du Lot, retraité		
Viers Jérôme	Professeur des Universités	Observatoire Midi-Pyrénées		

Combien consomme-t-on en France?

RÉPARTITION DE LA CONSOMMATION D'ÉNERGIE PRIMAIRE EN FRANCE

TOTAL: 249 Mtep en 2018


En % (données non corrigées des variations climatiques)

EROEI

EPJ Web of Conferences **189**, 00016 (2018) *LNES 2017*

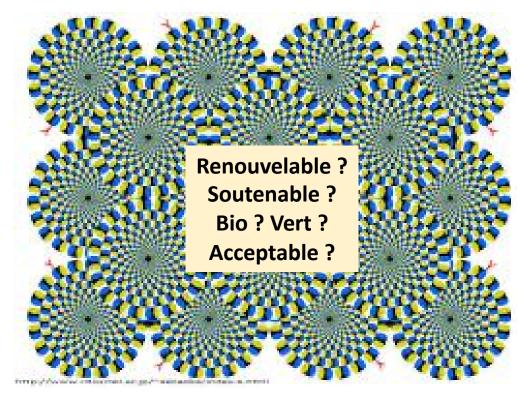
https://doi.org/10.1051/epjconf/201818900016

Chiriboga et al. Helyion 6, 2020

Table 6

Biodiesel Equateur

EROI for each scenario and raw material.


Scenario	Sugar Cane	Corn	Wood	African Palm	Pinion	Bovine	Porcine
S1	1.796	0.944	0.687	2.604	2.443	1.500	2.100
S2	1.796	0.986	0.748	2.787	2.576	1.769	2.415
S3	1.796	1.010	0.794	2.921	2.670	1.977	2.653
S4	1.796	1.040	0.845	3.052	2.743	2.187	2.891

Yazan (2018) *Applied Energy* 212 Arodudu (2017) *Applied Energy* 198

Neutralité carbone

Consom biomasse Retour à la terre

Surfaces monopolisées COS CIVES

Conditions Agriculteurs

Subventions Concurrences

Pollutions, écocidité Santé Environnementale

Epandages Eaux, airs, sols

Energie délivrée Transition

TRE-EROIE ACV

Réflexion globale: Transition Energétique maintenant?

Raréfaction des ressources Raréfaction de l'énergie Démographie croissante

GES: +4-7°C en 2100

Réduction des surfaces habitables et cultivables

Recul du Permafrost Fontes calottes glaciaires

Migrations de masse, famines, conflits

Méthanisation ou **Isolation + Pompes à chaleur** ?

Energie: carbonée faible efficacité (biomasse) jusqu'en 2050 ou **décarbonée haute efficacité** (nucléaire + Optimisation PV, Eolien, Métha) ?

Une riveraine le 20 avril 2021

Nous habitons St Romain de Surieu, en Isère.

Une unité de méthanisation a été construite à côté de chez nous (une cinquantaine de mètres en limite de propriété ; environ 70 mètres entre les cuves et notre maison).

Depuis la mise en route de l'installation, nos conditions de vie se sont considérablement dégradées. La nuisance principale est le bruit mais il y a également le trafic routier, les odeurs, les fuites de digestat, la mare asséchée.....

Les non-respect des prescriptions générales de ces installations sont nombreuses...

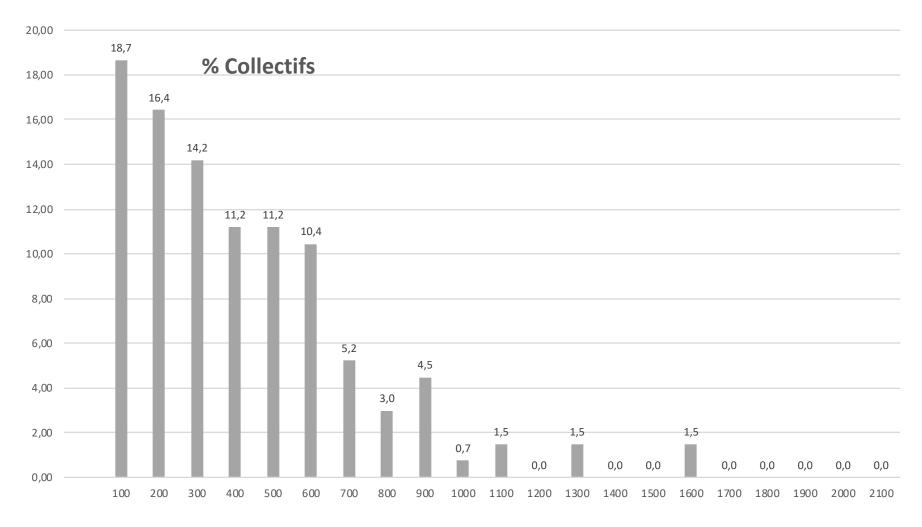
Nous doutons que le tonnage déclaré soit bien respecté.

Nos différentes démarches nous ont conduit à solliciter les services de l'Etat et à nous renseigner sur la méthanisation.

Nous avons écrit aux différents services de l'Etat, mais aussi au Préfet, au Sous Préfet, au Ministre de l'Intérieur et à la ministre de la Transition écologique (sans réponse des ministres).

Pour le moment, nos démarches n'ont pas permis de trouver de solution au problème.

Nous avons constaté le non respect du permis de construire (dimensions, emplacement, cuves semi-enterrées, problème de distance par rapport à notre habitation....)


Un Collègue Danois (2021):

Everything is not great. The company is making a fortune producing biogas based on primarily slurry. The business is only rentable due to public support (the taxpayers). The company itself has confirmed that to me. In my research i found out, that Nature Energy's nine danish filials in 2018 got more than half a billion danish Kroner (roughly 68 million Euro) in public support. They will get the same public support every year until 2032. The parliament has observed that the rules are too lucrative and has changed the public support for newcomming biogas companies. I guess Nature Energy has the same strategy for their investments in France. Their strategy is to grow big in all Europe. Maybe they also can find ways to "milk" the EU for money?

One of the problems producing biogas is the smell. There has been quite a lot af complaints from neighbours to the biogas plants. Nature Energy say, that they have solved the problems. I don't know if they are right. But maybe they can solve it. In my hometown, Kolding the protests against the smell pressed the local council to change the decision to allow the company build a biogas plant.

Nature Energy is mostly owned by the **foreign equity fund**, **Gosford Capital Designated Activity Company based in Dublin**. Which is again owned by an **american** equity fund, **Davidson and Kemper** and an **english** equity fond, **Pioneer Point Partners**. Why do they have an address in low tax Ireland?

The danish Pension company "Sampension" owns 20%. They have 9 local filials in which they go together with local farmers, but Nature Energy has the deciding influence.

Distance aux premiers riverains (m)

Des fondements erronés

Neutralité carbone $CH_4 \rightarrow CO_2 + 2H_2O$ énergie carbonée, forts GES

Démontrons-nous l'inverse du GIEC ? Processus lents (Atmosphère + sol) ?

Energie Méthanisation \rightarrow CH₄ (60%) + CO₂ (40%) TRE (EROEI) ?

Transition énergétique 900 MW x 8760 h = 7,9 TWh

<métha> → 0,012 TWh nominal 0,18% de Eprim (1196 méthaniseurs)

Environnement

GES méthanisation \rightarrow CH₄ (60%) + CO₂ (40%): 40% de + de GES / kWh transformé

GN \rightarrow CH₄ (> 90%) + alcanes (< 10%)

NH₄⁺ moins bio-assimilable que NO₃⁻ : engrais faible, amendement faible

PRG sur 20 ans PRG(CH₄) = 86 ? 1/86 = 1,16 %

fuites 2-10% sur site, 0,1-1% en ligne ...

Réduction des déchets 90% des « déchets » restent à épandre : 2,7 Mha d'épandages (9% SAU)

25 Mt → 5 départements 5-6 TWh efficace (1% du GN)

Dérive: création de faux déchets via des « cultures dédiées »

CIVE > 309 000 t > 1 328 000 t

maïs > 58 000 t > 113 000 t

Pourquoi le CSNM?

Consommation effrénée (ressources fossiles) → GES → Changement climatique

→ Politique de protection environnement et biodiversité → EnR (Eolien, solaire PV, méthanisation)

Méthanisation: « Domestique », Microméthanisation, à la ferme, agricole collective, industrielle, STEP ... et mix

Présentée comme « Vertueuse »: - valorisation de déchets → méthane CH₄

- augmenter le revenu des agriculteurs

- économie d'engrais

Pour ces raisons: ce gaz est appelé biogaz, ou biométhane s'il est épuré, voire gaz « vert », pourtant rien n'est Biologique ni dans le processus ni dans les produits au sens « Agriculture Biologique »

Pourquoi le CSNM ? Des conséquences occultées

Conséquences variées et négatives

- nuisances (odeurs, sanitaires, transports)
- impacts sur et hors- sols et la biodiversité,
- impacts sur les nappes et les airs
- immobilier

Riverains alertés tard et mécontents

- → > 255 000 signatures de pétitions
- → > 221 associations et collectifs: CNVMetha www.cnvmch.fr
- → 271 accidents sur 170 sites
- → Fiches pédagogiques du CSNM pour saisir les conséquences des feuilles de route ADEME et autres annonces

Santé Environnementale ? Ecocidité ?

Matière Organique

CHONSP: Carbone Hydrogène Oxygène Azote Soufre Phosphore

Qui forment des « chaînes courtes » et des « chaînes longues »

Que décomposent:

Bactéries

et

Champignons

Pouvoir Méthanogène

Fiche 2 du CSNM

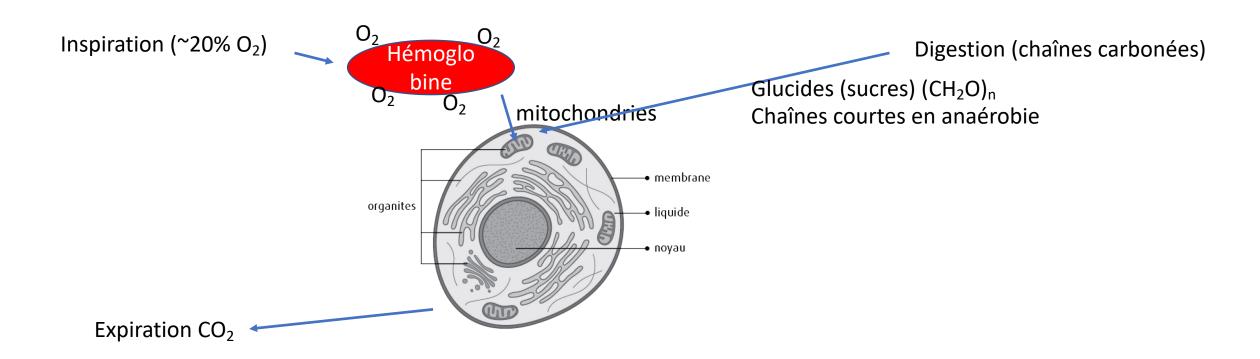
- Le pouvoir méthanogène est très variable d'un intrant de méthanisation à un autre. Il varie de quelques m³/t pour les intrants les moins méthanogènes (lisiers par exemple), à quelques centaines de m³/t (huiles, graisses) pour les plus méthanogènes.
- Pourquoi ces différences ?

Pour produire le méthane (CH₄), les intrants les plus méthanogènes doivent contenir beaucoup de carbone (C) et d'hydrogène (H), comme les huiles ou les graisses. Le lisier en contient très peu.

Pouvoirs méthanogènes

Lisier de porc 10 m³/t Maïs 90 (pâteux) – 330 (paille)

Huile alimentaire 784 m³/t


Pourquoi certains intrants diminuent la méthanisation ?

Certains intrants contiennent beaucoup d'eau (H₂O) et donc peu de carbone en proportion. Ils peuvent aussi être riches en azote (N) et soufre (S). C'est le cas des lisiers.

Avec N, S et H, et en absence d'oxygène (anaérobie), les gaz NH₃ (ammoniac) et H₂S (sulfure d'hydrogène) sont produits. Ces gaz dangereux, ont un effet dépressif sur les bactéries méthanisantes, c'est à dire qu'ils les empêchent de produire du méthane.

Ce n'est pas « comme la panse d'une vache »!

Car la circulation sanguine opère

L'Hb transporte O₂ qui transforme les nutriments issus de la digestion en énergie directement utilisable par les cellules

Effets d'une méthanisation poussée à outrance ?

Fuites et GES? 2-10%! (Meyer-Aurich et al. *Renew. Energy* 2012)

Surface cultivée nécessaire ? 3-6 départements français pour la PPE 2028

Surface d'épandages ? 2323 ha/méthaniseur

Epandages et GES, particules fines, NOx?

Epandages et augmentation des nitrates dans l'eau-rivières-mers

Perturbations du biotope du sol

- NH₄⁺ moins bioassimilé que NO₃⁻
- Faim en carbone des bactéries du sol: plus de CO₂, moins de COS
- NH₄⁺ et champignons du sol ?

Le carbone du sol sert de carburant! Est-il lui aussi fossile?

Quelles Conséquences Sociétales ?

Comment peut-on accepter que nos agriculteurs soient mieux rémunérés en produisant du gaz qu'en donnant à manger à la population ? C'est immoral!

Allemagne: augmentation du prix des terres

augmentation du prix des fourrages

Danemark, UK, USA ... problèmes dus à la méthanisation

Donc mise en compétition des agriculteurs-éleveurs entres eux à brève échéance

Mise en compétition avec les grosses multinationales du gaz ...

Sortie des digestats du cadre de déchets: arrêtés DigAgri2 et 3, puis CDC Dig

Quelle surface nécessaire ? *Fiche 5 du CSNM*

1 département métropolitain moyen français: 6400 km²

Sur la base ADEME 2013:

50 TWh/an (10% du Gaz Naturel fossile)

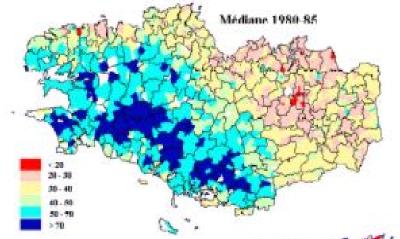
3 à 6 départements Français!

Combien pour produire 100 % du Gaz Naturel fossile ?

C'est pas nouveau! Les biocarburants c'était pareil! Avec un PCS plus élevé ...

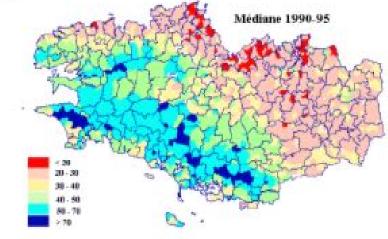
Quelle Surface d'épandage nécessaire ?

PPE: 7% du Gaz Naturel sous forme de Biogaz en 2028: 31,5 TWh/an


Surface moyenne d'épandage: 2323 ha / méthaniseur

Nb de méthaniseurs (proj + service):

Soit: $2500 \times 2323 / 29000000 = 20\% \text{ de la SAU}!$


Pourquoi le COS a diminué ?

Depuis la fin de la deuxième guerre mondiale plusieurs mécanismes sont déjà intervenus qui ont contribué à diminuer le taux de COS et de matière organique des sols :

- le retournement des prairies
- l'approfondissement des labours
- la fertilisation minérale
- la substitution des fumiers par les lisiers

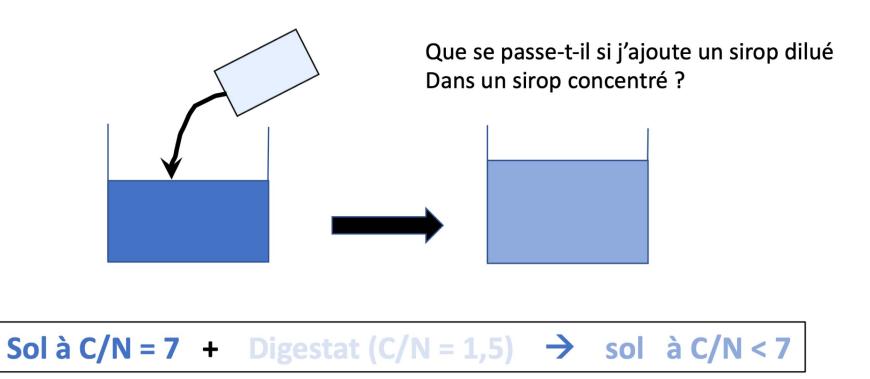
De manière générale l'intensification de l'agriculture

Au fait les CIVES ?

Jouent le rôle de CIPAN:

- elles prennent du N dans le sol pour pousser
- le N revient dans le sol via le DL, avec moins de C Entrent en concurrence avec les cultures vivrières Pour pousser un peu l'hiver, et beaucoup début printemps:
 - il faut des engrais ... avec N ...

Pour pousser l'été, il faut de l'eau! Et des engrais ...


C'est un CIPAN qui renforce la concentration en N, et baisse C ... des Cultures Intensificatrices Vers un Epuisement des Sols

Plus de 100 000 ha de CIVEs sont cultivées en France (> 780 000 t!)

Les bactéries ont faim dans le sol!

C/N < 7
Faim en carbone (C)

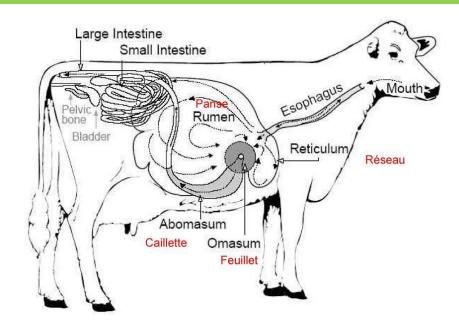
C/N > 7
Faim en azote (N)
SOL

Et trouvent donc ce qu'elles peuvent Du COS! - 0,8% de COS

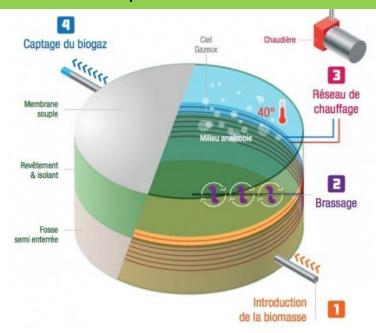
Méthanisation = procédé chimique, pas « Bio » ni « vert » ! Fiche 4 du CSNM

Génie des Procédés Chimiques

Hydrolyse enzymatique et acidogénèse: les chaînes organiques complexes (polymères: protéines, lipides, polysaccharides) sont transformées en composés plus simples (monomères: acides gras, peptides, acides aminés, alcools, sucres)


acétogénèse : les monomères sont convertis en acétates, acides organiques, alcools et (H₂+CO₂) par les bactéries fermentaires et acétogènes

méthanogénèse : les acétates et (H₂+CO₂) sont transformés en méthane et en gaz carbonique par les archées méthanogènes


$$H_2 + CO_2 \rightarrow CH_4 + CO_2$$

 $CH_3COOH \rightarrow CH_4 + CO_2$

« comme la panse d'une vache »?

Tube digestif du ruminant aérobie-anaérobie

Réacteur chimique à fermentation anaérobie

Intrants Végétaux uniquement

Air (O_2, N_2)

Sortants Effluents liquides -lisier, $(NH_2)_2CO$

Effluents solides –fumier (Cellulose, hemiC)

Lait (gluCose-galaCtose, CO₂, N₂, O₂ dissouts)

Gaz (30% CH₄, 70% CO₂)

Végétaux, effluents, boues STEP, abattoirs, cantines, huiles usées, IAA, pharmaceutiques ...

Digestat liquide (NH4-OH): 80%

Digestat solide (C, P, K, N): 10%

Gaz (60% CH₄, 30% CO₂, NH₃, H₂S): 10%

Bilan aérobie

$$(CH_2O)_n + nO_2 \rightarrow n(CO_2 + H_2O)$$

L'énergie libérée profite à l'organisme (aux cellules)

Bilan anaérobie

$$(CH_2O)_n \rightarrow n(CH_4 + CO_2)$$

L'énergie libérée sert à créer du gaz

Ce n'est pas « comme la panse d'une vache »!

Cultures:

- Résidus: Pailles, Betteraves, coupe, ...
- Culture Intermédaire à Vocation Energétique (Ciboule, Tréfles, ..., Sorgho, Maïs!) pas de limite
- Dédiées (Maïs, Colza, ...) 15% max en France

=> Si compostage naturel (Ph Neutre, Carbone, μ -organismes, macro-organismes (vers, arthropodes, collemboles, insectes ...)

Déchets Organiques:

- Effluents d'élevages: Lisier, Fumier ...
- Biodéchets (résidus ménagers, Restauration, supermarchés, IAA, ...)
- Sous produits animaux (Déchets d'abattoirs, graisses, sang, ...)
- Boues de STEP industrielle ou territoriale

Epandage de digestats:

- Digestat brut ...
- Séparation de phase: Digestats liquide et solides
- Traitement par stripping

Gaz: (PRG sur 100 ans)

N₂O: Protoxyde d'azote (298)

SO₂: Dioxyde de soufre

CO₂: Dioxyde de carbone (1)

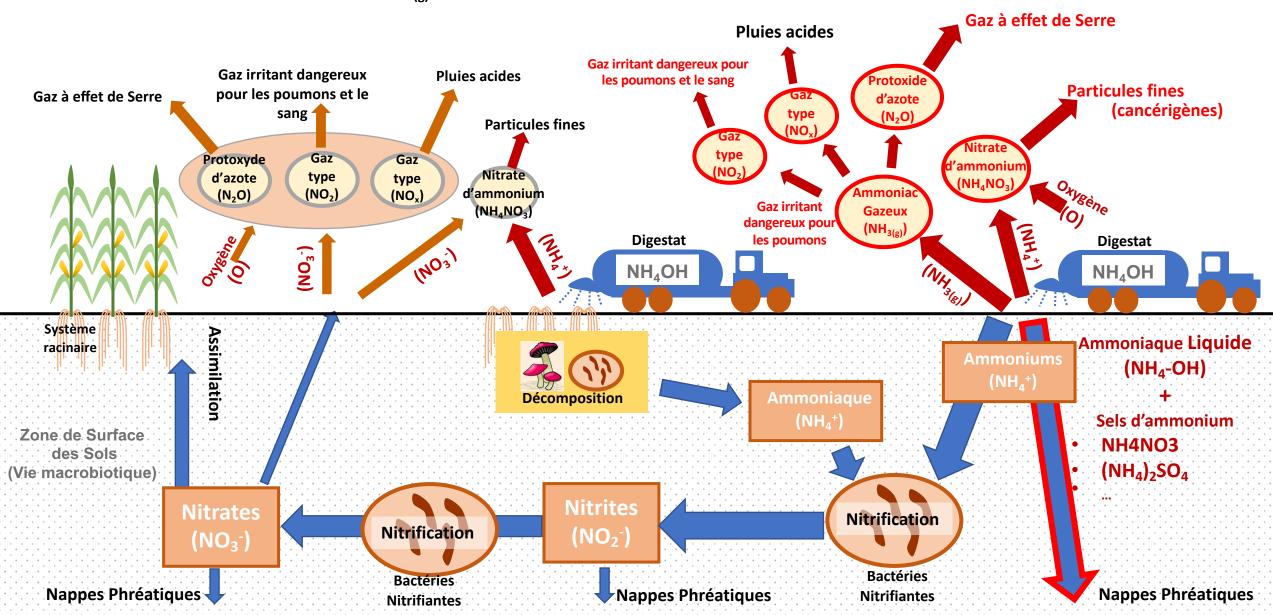
CH₄: Méthane résiduel (32)

NO_x: Oxydes d'azote

H₂S: Sulfure d'hydrogène

Quelques Grandeurs

Quelles quantités de produits


Gaz (10%)	Extrants (90%)			
CH ₄ (6%) CO ₂ (4%) H ₂ S, NH ₃ , (1%)	Liquide (80%) NH ₄ (0,03) Ntotal (0,04) K ₂ O (0,02)	Solide (10%) MO résiduelle P ₂ O ₅ (0,005) NH ₄ (0,001) Ntotal (0,004)		

Donc en gros pour 10 000 t d'intrants :

600 t de CH₄ 8 000 t de Dig. Liq. 300 t de CO₂ 1 000 t de Dig. Sol.

Digestat à l'épandage

- Rappel: l'ammoniac dissout dans l'eau forme de l'ammoniaque: $NH_3 + H_2O \rightarrow NH_4$ -OH en équilibre soit aussi (NH4+)(OH-)
- Ammoniac: NH₃; Ammoniac Gazeux: NH_{3(g)}; Ions hydroxyles: (OH-); Ions ammonium (NH₄+); Ions nitrates (NO₃-)

Hypothèse:

Couverture partielle des besoins en azote par l'azote des digestats. Avec un apport de 70 kg N par ha apportés sous forme de digestat avec un C/N de 2:

Soit un apport de 140 kg de C/ha seulement (carbone du digestat)
Pour minéraliser 70 kg de N/ha, les micro-organismes ont besoin d'un C/N de 7 au minimum:

Soit 490 kg de C/ha

Il va leur manquer 490 – 140 kg = 350 kg de carbone par ha, qui va être prélevé sur la matière organique des sols

Au total:

Diminution de la restitution en carbone sur les sols : 130 kg de C/ha (accélération du cycle du carbone, pour 3,8 Mt de C de la SAU)

Faim en carbone : 350 kg de C/ha

Total: 480 kg de C/ha et par an de carbone par an, Soit 830 kg de MO/ha en moins en un an

Sur un stock de 3500t*0,025 = 87 t

En 10 ans : diminution de 8 t sur 87 t, soit 10% du taux de MO

Est-ce mesurable rapidement?

La diminution du taux de carbone du sol ou du taux de MO des sols n'est pas identifiable expérimentalement avant plusieurs années.

Par exemple dans l'hypothèse de calcul présentée il n'est pas possible d'identifier une baisse de 415 kg par an (350 + 65) sur un stock de 87 tonnes/ha.

Il faut au moins 5 ou 10 ans pour que ce soit mesurable avec les incertitudes de mesures:

5 ans: 2 tonnes sur 87 tonnes

10 ans: 4,15 tonnes sur 87 tonnes

En conséquence on peut dire que les études menées sur de courtes périodes (quelques années) qui concluent que la méthanisation n'a pas d'impact sur la teneur en COS et MO des sols ne sont pas crédibles.

La baisse du taux de COS et MO des sols en cas d'épandage de digestat suit le même mécanisme qu'en cas d'épandage de lisiers (Urée (NH₂)₂CO: C/N = 0,5) ou de fertilisation purement minérale (sans apport simultanné de fumier par exemple).

Une augmentation de C/N même en méthanisant?

Imaginons 10 000 t d'intrants de méthanisation récoltés sur 10 000 ha: soit 1 000 t de digestat solide avec C/N = 10.

Imaginons d'épandre ces 1 000 t sur 1000 ha:

- Si le sol est à C/N = 10, l'épandage de digestat solide ramène autant de C/N, par effet de concentration de surface.
- Si le sol est à C/N < 10, on peut même imaginer une augmentation due à l'épandage de digestat solide.

Mais:

- Qui accepterait de donner des intrants et ne recevoir que des digestats liquides (8 000 t)?
- Les digestats solides ne possèdent plus de chaînes carbonées courtes, les bactéries auront faim quand même.
- Au niveau global (sur la surface initiale de chalandise), en moyenne le C/N a bien baissé (mais chez les voisins)